
A database storing aspects of paralic & shallow-marine sedimentary architecture that 
can be applied to reservoir characterization & prediction. The database serves as a 
tool with which to achieve the following primary goals:

Ÿ condition object- and pixel-based stochastic reservoir models;

Ÿ inform interpretation of lithologies observed in core and predict 3D architecture.

Ÿ generate quantitative facies models for bespoke coastal & shallow-marine
     sedimentary systems that act as subsurface reservoir bodies;

Ÿ guide well correlation of shallow-marine sandstone bodies;

Ÿ predict the likely heterogeneity of geophysically imaged geobodies;
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Introduction: Shallow-Marine Architecture Knowledge Store (SMAKS)
The Shallow-Marine Architecture Knowledge Store 
(SMAKS) is a relational database devised for the 
storage of hard and soft data on the sedimentary 
architecture of ancient shallow-marine and paralic 
siliciclastic successions, and on the geomorphological 
organization of corresponding modern environments. 
The database allows incorporation of data from the 
published literature, which are uploaded to a common 
standard to ensure consistency in data definition. The 
database incorporates data on geological entities of 
varied nature and scale (i.e., surfaces, depositional 
tracts, architectural elements, sequence stratigraphic 
units, facies units, geomorphic elements), including 
attributes that characterize their type, geometry, 
spatial relations, hierarchical relations, and temporal 
significance. Furthermore, geological entities are 
assigned to depositional systems, or to parts thereof, 
that can be classified on multiple parameters (e.g., 
shelf width, delta catchment area) tied to metadata 
(e.g., data types, data sources).

The SMAKS permits the quantitative characterization 
of modern and ancient shallow-marine and paralic 
clastic depositional systems. It aims to serves as a 
repository of analogue information for hydrocarbon-
bearing successions, and as a research tool, 
applicable to aid the development of facies models or 
to assess the sensitivity of depositional systems to 
particular controlling factors, for example.
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surfaces.
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This document (i) presents a brief description of the 
content database, (ii) illustrates the types of 
quantitative output that can be generated upon 
in ter rogat ion of  the database through the 
implementation of queries of geological significance, 
and (iii) demonstrates how this information can be 
used for purposes of subsurface characterization in 
applied contexts.

The sedimentary and geomorphological architecture 
of preserved ancient successions and modern 
environments are translated into the database in the 
form of entries within tables organized in a relational 
schema. Some of these entries represent geological 
entities (e.g., sedimentary units, surfaces) at different 
scales of observation and which result from different, 
although not mutually exclusive, approaches to 
analogue characterization (e.g., facies analysis, 
a rch i tec tu ra l -e lemen t  ana lys i s ,  sequence 
stratigraphy). Other entries represent relationships 
between geological entities (unit transitions, surface 
relationships). In this way, all the significant aspects of 
clastic sedimentary architecture are considered in the 
database conceptual model.

Improvement in subsurface prediction of shallow-
marine and paralic siliciclastic hydrocarbon reservoirs 
is typically attempted through the characterization of 
ancient and modern depositional systems that 
represent potential reservoir analogues. Analogue 
data are applied in scenarios of reservoir exploration, 
development and production: (i) to predict the potential 
occurrence and size of stratigraphic traps; (ii) to predict 
the seismic resolvability of sedimentary bodies; (iii) to 
erect conceptual reservoir models; (iv) to guide well-
to-well correlations of sedimentary units; (v) to 
condition static reservoir models. Ancient and modern 
analogues are generally characterized through a 
number of approaches and at multiple scales of 
observat ion (e .g . ,  sed imentary  fac ies and 
architectural-element analysis of ancient outcrop 
successions, mapping key stratal surfaces at outcrop 
or in seismic data to erect a sequence stratigraphic 
framework, analysis of aerial photographs or satellite 
imagery of modern environments).

How does SMAKS work? The SMAKS database methodology brings together 
analogue datasets from different data types and 
contexts, associated with different classes of paralic 
and shallow-marine depositional systems. 

SMAKS
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Above. Distribution of SMAKS >220 analogues through 
geological time.
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Page 4

Fluvial, Eolian & Shallow-Marine Research Group http://frg.leeds.ac.uk/

SMAKS analysis at the scale of architectural elements and lithofacies units

SMAKS
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Above. SMAKS facies models quantifying the facies make-up of different types of shallow-marine sub-environments.

To demonstrate the wide applicability of the database 
in fields of both fundamental and applied research, 
example database output is presented that (i) includes 
data from wave-, tide-, and fluvial-dominated shallow 
seas and sedimentary successions, and (ii) covers a 
wide depositional spectrum, from backshore to shelf-
edge settings. Examples of the types of output that can 
be retrieved from SMAKS include information on the 
facies organization of different types of paralic sub-

environments, on the hierarchical arrangement of 
architectural elements that form deltaic constructional 
units in Quaternary deltas, on the morphometry of 
modern and Quaternary tidal sand ridges, and on the 
geometry of parasequence-scale nearshore 
sandstone belts, either globally or for specific 
depositional systems (e.g., the Upper Cretaceous 
successions of the Western Interior Seaway, Utah, 
USA).
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How can SMAKS be applied for subsurface characterization?

SMAKS
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Above. SMAKS output that quantifies the net-to-gross ratio of deltaic elements 
from selected analogues.
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Above. SMAKS output on grainsize statistics relating to the 
deposits of recent shelf tidal sand ridges. this type of output 
contributes to the compilation of quantitative facies models, 
which may find application as templates for assisting with 
sub-environment interpretation of ancient deposits. The 
discrimination of grain-size domains can be applied to 
predict expected reservoir quality.
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Above. SMAKS output on the relative proportion of 
parasequences classified on environment of origin across 
different types of parasequence sets and systems tracts.

The database design and standard 
h a v e  b e e n  s t r u c t u r e d  w i t h 
consideration of the variety of 
approaches and data types that are 
taken in studying the sedimentary 
geology of shallow-marine and paralic 
depositional systems. The database 
allows for a convergence of datasets 
from studies of outcrops, of the 
subsurface and of the modern seabed. 
This  convergence permi ts  the 
reconciliation of facies analysis, 
archi tectural-element analysis, 
s e q u e n c e  s t r a t i g r a p h y  a n d 
geomorphology.

SMAKS can be applied to characterize 
subsurface reservoir successions for 
which only limited data are available. 
The database can also provide hard 
data with which to constrain reservoir 
models. Additionally, it can be used to  
develop bespoke facies models.
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SMAKS
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Above. SMAKS output on the geometry of architectural and geomorphic elements classified as shelf tidal sand ridges.

Above. SMAKS output on the thickness of Quaternary 
incised-valley fills classified by type of continental margin 
across which they developed. SMAKS stores information 
on >100 IVFs from both late Quaternary and ancient 
settings. The database quantifies the geometry and 
proportion of systems tracts, and of architectural elements 
of different hierarchies within IVFs. Resultant bespoke 
facies models aid subsurface characterization.

Above. SMAKS output on the relationship between the width 
of ’estuary’ architectural and geomorphic elements and the 
size of the estuary catchment.

How can SMAKS be applied for subsurface characterization?
The ability to query for sedimentological properties and 
to apply filters to SMAKS output permits the selection 
of analogues that share user-specified characteristics, 
which could be sedimentological characteristics or 
parameters that describe the depositional context. The 
synthesis of quantitative information from multiple 
case studies results in the construction of composite 

analogues, which incorporate variability in sediment-
ological and stratigraphic properties, and are therefore 
suitable for the quantif ication of associated 
uncertainty. These serve as quantitative facies models 
that can be used to predict reservoir heterogeneity, 
conditioning stochastic geocellular reservoir models, 
and guide well-to-well correlations of sandbodies.
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All data stored within SMAKS can be filtered on 
analogue depositional-system parameters or 
associated architectural properties to match with a 
given subsurface system of interest. Example outputs 
from the SMAKS database are presented throughout 
this document.

SMAKS output

In its most basic form, SMAKS output consists of 
quantitative information about:

Ÿ proportions of genetic units within higher-scale 
units or volumes;

Ÿ geometrical parameters of genetic units;

Ÿ spatial relationships of genetic units in three 
dimensions.

This output can be employed to generate information 
directly applicable to subsurface problems, such as 
plots of genetic-unit width-to-thickness aspect ratios, 
tabulated genetic-unit transition statistics, statistical 
distributions of user-defined genetic-unit net-to-gross 
values.

Ÿ 581 subsets;

Ÿ >220 case studies;

Ÿ 2,171 sequence stratigraphic units;

Ÿ 2,354 geological surfaces;

Ÿ 86 datasets with substantial statistical summaries.

SMAKS content

Over 500 additional peer-reviewed articles have been 
identified as containing architectural data suitable for 
database input, which is on-going. Figures are correct 
as of June 2020.

The following pages present example output to 
demonstrate how SMAKS can be applied.

Ÿ 4,892 architectural elements;

SMAKS currently includes data associated with:

Ÿ 815 classified depositional tracts;

Ÿ 1,889 geomorphic elements;

Ÿ 38,684 facies units;
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Above. SMAKS output on the proportion of wave-, tide- and river-dominated deposits in incised-valley fills classified 
according to their physiographic setting.

Above. SMAKS output on the relative preservation of 
deposits associated with different systems tracts in cross-
shelf incised-valley fills.

Above. SMAKS output relating incised-valley fill (IVF) 
width to mean tidal range at the shoreline. Information such 
as this can be used to help refine gross depositional 
environment models in exploration targets. Where sand-
prone geobodies are present in IVFs, knowledge of 
regional tidal regime is important for predicting potential 
reservoir scale.
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SMAKS application 1: analysis of delta lobe progradation and stacking

SMAKS
http://frg.leeds.ac.uk/
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SMAKS output quantifying the spatio-temporal significance 
of different ranks of deltaic constructional units recognized 
in the stratigraphy of active deltas; a comparison is made 
with recent and ancient deltaic parasequences. Violin plots 
show distributions in the length of time over which these 
types of units have developed and in their maximum 
observed thickness. The boxes in the plots represent 
interquartile ranges and horizontal bars represent medians. 
The scatterplot (D) shows the maximum thickness of both 
parasequences and deltaic units versus the duration of time 
over which they have developed.
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SMAKS application 2: analysis of the geometry of shoreface parasequences

SMAKS
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Above. Geometry of different classes of parasequence-scale nearshore sandbodies.
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SMAKS application 3: controls on parasequence set stacking patterns

SMAKS

Modified after Zecchin et al. (2006)
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Above. Idealized example illustrating a tectonically driven mechanism for the 
co-variation of parasequence thickness and stacking pattern.

Above. SMAKS output on the geometry of clastic parasequences in parasequence sets classified on stacking pattern.

Above. SMAKS output on the progradation style of clastic 
parasequences in parasequence sets classified on stacking 
pattern.

SMAKS has been applied to investigate how 
accommodation, sediment supply and autogenic 
sediment-storage dynamics are recorded in the 
sedimentary architecture and stacking patterns of 
shallow-marine sand bodies. Results are used to 
evaluate the validity of paradigms and models that 
are routinely used to explain and predict trends in the 
anatomy and arrangement of parasequences. 
Data on 957 parasequences from 62 case studies of 
clastic, shallow-water successions are incorporated 
in this analysis. Database outputs indicate which 
proxies of accommodation, sediment supply and 
accommodat ion/sediment-supply rat io are 
signif icant as predictors of parasequence 
architecture, and allow for interpretations of the 
importance of allogenic and autogenic factors. 
Results have implications for how subsurface 
successions are interpreted from limited well data.
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SMAKS application 4: determination of the role of relative-sea-level change
and rates of sediment delivery in governing shoreface sandstone trajectory

SMAKS
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Above. SMAKS output on relationships between regressive 
shoreline trajectory (at parasequence and depositional-tract 
scales) and dip length of parasequence sandbodies.

Above. SMAKS output on the relationship between feeder-
system type and dip length of deltaic parasequence 
sandbodies. WIS = Western Interior Seaway, Cret., USA.

Analysis using the SMAKS database has yielded the 
following novel insights: (i) parasequence thickness 
varies as a function of water depth, accommodation 
generation and erosional truncation, and these 
variations are also reflected across types of systems 
tracts and parasequence sets; (ii) the dip length of 
parasequence sand bodies demonstrates scaling with 
measures of accommodation/sediment supply ratio at 
multiple scales, partly in relation to the possible effect 
of sediment supply on progradation rates; (iii) in 
systems tracts, stratigraphic trends in parasequence 
stacking due to autogenic mechanisms or to 
acceleration or deceleration in relative sea-level 
fluctuations are not revealed quantitatively; (iv) some 
association is seen between the abundance of deltaic 
or river-dominated parasequences and progradational 
stacking; (v) positive but modest correlation is 
observed between measures of river-system size and 
the dip length of shallow-marine parasequence sand 
bodies. The resulting insights can be applied to guide 
sequence stratigraphic interpretations of the rock 
record and the characterization of sub-seismic 
stratigraphic architectures of subsurface successions. 
The quantification presented in this work can be 
referred to when attempting predictions of likely 
volume, geometry and compartmentalization of 
shallow-marine sand bodies, on the basis of 
constraints of accommodation and sediment supply 
that may be available in subsurface studies, 
particularly from those based on regional seismic 
stratigraphy and source-to-sink analyses.
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Above. Geographic distribution of some of the 
>220 analogue studies contained in SMAKS, as of 
June 2020. Database population is on-going.

To enhance sponsor impact, FRG-ERG-SMRG has 
collaborated with external partner PDS to develop Ava Clastics, 
a product that enables direct coupling of FAKTS & SMAKS with 
modelling workflows: www.pds.group/ava-clastics/
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The Shallow-Marine Architecture Knowledge Store is a relational database devised for the storage of hard and soft data on 
the sedimentary architecture of ancient shallow-marine and paralic siliciclastic successions, and on the geomorphological 
organization of corresponding modern environments. The database allows incorporation of data from the published literature, 
which are uploaded to a common standard to ensure consistency in data definition. The database incorporates data on 
geological entities of varied nature and scale (i.e., surfaces, depositional tracts, architectural elements, sequence 
stratigraphic units, facies units, geomorphic elements), including attributes that characterize their type, geometry, spatial 
relations, hierarchical relations, and temporal significance. Geological entities are assigned to depositional systems, or to 
parts thereof, that can be classified on multiple parameters (e.g., shelf width, delta catchment area) tied to metadata (e.g., data 
types, data sources).

Ÿ Examine data from wave-, tide-, and fluvial dominated shallow seas, from backshore to shelf-edge settings.

Ÿ Quantitative characterization of modern and ancient shallow-marine and paralic clastic depositional systems.

Ÿ Serves as a repository of analogue information for subsurface reservoir successions.

Ÿ Can be applied to aid the development of depositional models for particular types of paralic and shallow-marine reservoirs.

Ÿ Assess the sensitivity of depositional systems to particular controlling factors.

Ÿ Build bespoke facies models for particular classes of paralic and shallow-marine sedimentary succession.

Ÿ Predict element shape & size as a function of independent external controls (sea level history, basin type, subsidence rate).
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